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Abstract—Various problems arising in applied mechanics involve interaction between two bodies having
separation, bonding, re-bonding and slip at the interface. Simple FEM models assume one of the two
extremes, “bonded interface™ or “smooth interface”. Alternative spring models have been developed to
model slip, shear strength and dilation. These models are applicable for small deformations and coincident
nodes at the interface. The paper describes a rigorous solution for the problem which does not sacrifice
the simplicity of the FEM approach. In this study the deformations are assumed to be large enough to
change the geometry of the problem and the interface is assumed to be a frictional adhesive one with a
coulomb failure criterion. The technique examines the interaction of two bodies. namely the slare and
master bodies. It simulates frictional slip, separation, bonding and re-bonding of the slave body with
respect to the master allowing for large deformations and non-matching nodes at the interface. The
proposed solution is iterative where two levels of iterations are used. The first iteration procedure is used
to satisfy equilibrium and to deal with the geometrical non-linearity, while the second is used to satisfy
the interaction conditions at the interface. The proposed technique is illustrated with a number of test
problems of varying complexity. These demonstrate that the approach performs well for problems
involving interaction of two bodies under large deformations. Copyright ¢ 1996 Elsevier Science Ltd.
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DEFINITION OF THE PROBLEM

The problem of interaction between two bodies
subjected to large deformations is a challenging one.
Where deformations are small, the assumption of
“node to node™ interaction (Fig. la) is valid and the
solution is straightforward while in the case of large
deformations the node to surface™ interaction
(Fig. 1b) or "surface to surface’ interaction 1] has to
be modelled which makes the problem more difficult.
In this study, the choice of “node to surface™
interaction is made as it is more appropriate and
general. Furthermore, interface behaviour, such as
separation, bonding, re-bonding and slippage must
be modelled.

A simple rigorous approach to solve these
problems is developed. This work is an extension of
Katona's formulation for the case of small defor-
mations [2]. The features of the rigorous approach
are its simplicity and compatibility with FEM
solution subroutines. It also avoids the calculation of
flexibility matrices for the interacting bodies and the
associated problem of rigid body movement [3].

The two interacting bodies are named the master
and the s/are bodies. Each body is discretized using
nodes and isoparametric elements. The master
interface is discretized into a series of interface

elements. Each interface element is defined by its
nodal connectivity. The order of these nodes is
chosen to define the correct outward normal to the
master interface. The “*node to surface” contact is
identified by a slave node S and a master interface
element. The projection of the slave node S on the
master interface is defined by point $*. The angle
between the outward normal to the master interface
at point S* and the X-axis is denoted 6 and its
positive direction is anticlockwise. The displacements
in the global X-Y directions are denoted u, and u,,
while the displacments in the local normal and
tangential directions are denoted u, and u,. Figure 2
shows an m-noded master interface element, a slave
node S and the two coordinate systems.

SOME USEFUL RELATIONS

The relations between the incremental Cartesian
displacements Awu, and Aw, and the incremental
normal and tangential displacements Au, and Aw, are

as follows:
Au{ 1 ¢ s |)Au,
{Aul} - |:—s c]{Au}‘ (M
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Fig. 1. Interaction types.

Fig. 2. System of coordinates.
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There are unknowns on both sides of the equation.
On the left-hand side there are the unknown
incremental interaction forces, AF,; and AF;, while
all the displacements shown on the right-hand side
are unknown. To solve this problem, extra constraint
equations relating the two bodies’ incremental
displacements and incremental interaction forces will
be developed to augment eqn (5).

CONDENSATION OF THE STIFFNESS MATRICES TO
THE INTERFACE

As the solution of the interaction problem is
iterative, eqn (35) is condensed first to remove the
degrees of freedom which are not concerned with the
interaction problem and to reduce the computational
effort. The condensed stiffness equations can be
written as

AR . (AP _[K, o ]fau,
IV S A B Y ot

are the condensed incremental forces at the
master body interface nodes;

are the condensed incremental applied forces
at the slave body interface nodes;

where:
API’]]I

AP;:

K.  is the condensed tangent stiffness matrix of

the master body;

K. is the condensed tangent stiffness matrix of

the slave body.

All the rotational degrees of freedom are
condensed as the interaction problem concerns
constraints on the nodal translations.

TWO-LEVEL ITERATION TECHNIQUE

Before proceeding, it is useful to discuss the
solution technique employed. As in many non-linear
FE analyses, the load is applied in small increments
(or steps) while iterations are performed to satisfy the
equilibrium of the two bodies. In this study, these
equilibrium iterations are also called the major
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iterations. This major iteration deals with any
material or geometrical non-linearities.

A second iteration loop is also introduced into the
interaction analysis. These iterations are designated
the minor iterations. Within the minor iteration loop,
a mode of interaction at each slave interface node is
assumed, the constraint equations are formulated and
a trial solution is obtained. A check for the validity
of the assumed modes determines whether another
trial is required.

APPLICATION OF THE CONSTRAINT EQUATIONS TO
THE GOVERNING EQUATIONS

As in a small deformation analysis featuring
node-node interaction, the constraint equations
either impose displacement compatibility or force
equilibrium. The same concept applies for a large
deformation analysis involving node—surface inter-
action. Compatibility and equilibrium equations are
derived for each slave interface node S and the
m-noded master interface element with which it
interacts. The displacement compatibility constraint
equations at the /ith minor iteration take the following
form:
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To impose force equilibrium, constraint equations are

developed for the ith minor iteration:
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is the incremental slave node displacement in
the X-direction;

Au,s  is the incremental slave node displacement in
the Y-direction;

Au,,  is the incremental displacement of the mth
node of the master element in the X-direction;

Au,,  is the incremental displacement of the mth
node of the master element in the Y-direction;

AF s is the incremental slave node force normal to
the master surface;

AF s is the incremental slave node force tangential
to the master surface;

AF'; is the incremental slave node force in the
X-direction;

AF s is the incremental slave node force in the
Y-direction;

AF  is the incremental force in the X-direction for
the mth node of the master element;

AF | is the incremental force in the Y-direction for
the mth node of the master element;

a,b,d are constraint matrix sub-matrices;

f, is a constant vector.

Equation (7) is calculated, for each slave node, and
added to the governing system of equations [eqn (6)].
Each side of eqn (8) is added to the corresponding
side of eqn (6) to get rid of the unknown incremental
interaction forces. The new system of equations is
written as

AP, Ki 0 AT ﬁUS‘
APV +{F =|0 Ku BT|) AU (. (9
0 A B D AF,,
for
where
F are additional load vectors;
A,B,D are constraint matrices depending on the

modes of interaction;

AF, are incremental normal interaction forces
at the slave interface nodes
AF, are incremental tangential interaction

forces at the slave interface nodes.

This places all the unknowns into one side of the
equation facilitating the solution. For each slave node
and its interacting master interface element a
constraint matrix [c] and a load vector {f} are
defined. The constraint matrix is expressed as

These constraint matrices and load vectors augment
the system of governing equations yielding eqn (9).

CONSTRAINT MATRICES AND LOAD VECTORS FOR
DIFFERENT INTERACTION MODES

A number of different interaction conditions (or
modes) are possible for the slave interface nodes.
Three different conditions, namely free, sliding and
fixed modes, are examined. For each mode, the
constraint matrix [c] and load vector { f} at the slave
node are derived.

Free mode of interaction

For this mode, the slave node S separates from the
master interface and the ‘“‘total” interaction forces
diminish to zero. In other words, the applied
“incremental” interaction forces at the slave node S,
at the kth major iteration and the ith minor iteration,
should cancel out the ““total” interaction forces at the
previously converged (kK — 1)th major iteration. This
can be expressed as

AFs( _ —Fis!
AFf T\ -Fi [

an

and

1

AF s ¢ —si|—Fi!
AFig s ¢ ||-F&!

_f—cFi + sFE
T =sFi = cFKT

where Fts!', F& ' are the total normal and tangential
interaction forces at slave node S at the previously
converged major iteration (i.e. the (k — 1)th major
iteration). In eqns (11) and (12) superscript i stands
for the ith minor iteration while superscript & — 1
stands for the (k — 1)th major iteration.

For this mode the slave incremental interaction
forces are known a priori and they are used to derive
the incremental interaction forces for the master
interface nodes by the method of virtual work [3].
The incremental forces at the nodes of an m-noded
master interface element are the nodal forces

(12

0 0 [a]f equivalent to point loads equal and opposite to the
el={0 0 [6]"| (10)  incremental applied loads at the slave node S and can
l[a] [6] [d] be given by
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The corresponding constraint matrix [¢] and load Auwls s the incremental displacement at slave node

vector {f} are defined in Table 1. S normal to the master interface at the ith
minor iteration;

Auls  is the incremental displacement at slave node

S tangent to the master interface at the ith

minor iteration;

is the incremental displacement at point S*

normal to the master interface at the ith

minor iteration;

is the incremental displacement at point S*

tangent to the master interface at the ith

minor iteration.

Fixed mode of interaction

When the slave node § attaches to the master
interface, the displacement compatibility equation for Autie
node S and its projection S* on the master surface
element should be imposed into the governing system
of equations. At the kth major and ith minor Audlse
iteration the compatibility equation can be written as

gA -1 .

_ Auirs. Aurs

- ,(Au(s'.‘ — Auls ’) = {Auzs.}‘ {Au{s}’ (14
Auls' — Auls'

° ; For the tangential displacements it is assumed that

the slave node S and its projection S* are moving in

where: the same direction as that calculated in the previous
g' ="' is the normal gap between the slave node and  minor iteration.
the master surface element at the (k — 1)th The terms in the right-hand side of eqn (14) can be
major iteration; written as
Au',
Aul
Au;,s. (‘N| SN1 et (.'Nm SNm \ N (15)
Au(s. - —SN1 CN| s _SNm CNm ‘
Au
Au!
. U
Aulg _ cAuis + sAuys (16)
Auls —sAus + cAuls |

Now the equilibrium equations for the interface forces have to be imposed as well. Using the concept of
virtual work, the incremental forces at the master interface element nodes can be related to the slave node
incremental interaction forces. This relation is written as

N r A r ey
(AF‘\I N] 0 (’N| —SN1
AF,, 0 N SNy ¢N,
- : | = Do AF = : : AFs| . an
] ] Jars L AFs
AFI\’“ Nm 0 CNm —SNm
AF, 0 N, L sN. cN,
v J L J

Equation (17) directly defines matrix [b]", in eqn (8), while matrix [a]T transforms terms from the normal and
tangential system of coordinates to the Cartesian one. The constraint matrix [c] and load vector {f} for the
“fixed” mode of interaction are defined in Table 1.

Sliding interaction mode

When the slave node S slides along the master interface, compatibility is prescribed for the displacements
normal to the master interface. The compatibility equation can be written as

Auyse — Aups = g* =, (18)
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or

(Aul\—/ )
Auy,

[('N| SN] CNm SN,,,] <

T —{cAuis+ sA5) =gt (19)

Au,
Au,,

L)

Another condition for slip is that the total tangential
force at the slave node should be equal to the
maximum frictional force available. The maximum
frictional force is initially unknown, and firstly has to
be estimated according to the previously converged
major iteration, and then to be modified (or updated)
throughout the minor iterations. At the ith minor
iteration the maximum frictional force is defined by

T = (IFis ' + AF sltan() + c)sgn(Fis ' + AF ),
(20)

and the condition for the sliding state can be
expressed as
AF;S= T;nax—Ffsil- (21)
Like interaction for the “free” mode, the
incremental tangential slave node force is known and
will generate a load vector at both the slave node and
the interacting master interface element nodes. On
the other hand, the normal incremental force at the
slave node is unknown and a relationship between
this force and the master slave nodes can be found (as
before in the fixed mode). The corresponding
constraint matrix and load vector are defined in
Table 1.

FORMULATION OF THE RESIDUAL FORCE VECTOR

Two methods are used to calculate the residual
load vector {AR*} shown on the left-hand side of
eqn (5). In both methods the residual load vector is
defined as

{APY) = {R — {FY), (22)
where { R} is the total applied force vector at the kth
major iteration and {F*} is the nodal force vector
which is equivalent (in the virtual work sense) to the
current stresses at the kth major iteration.

The two methods differ in how the total force
vector {R‘} is defined at the interfacial nodes. The
first method accumulates the incremental interaction
forces at the slave nodes throughout the major
iterations to get the total forces at these nodes. The
total forces at the master interface nodes are

calculated from the total forces at the slave interface
nodes using the concept of virtual work.

The second method equates the total interaction
forces at the slave interfacial nodes to the equivalent
nodal forces due to the current stress state. In other
words, the residual forces at the interfacial slave
nodes become zero. The total forces at the master
interface nodes are calculated as before in the first
method.

The two methods are used to study the effect of
accumulating the incremental interaction forces (the
first method). In general, the second method for
calculating the residual force vector promoted
superior convergence, but the final results were more
or less the same.

CRITERIA FOR SELECTING NEW MODES DURING
MINOR ITERATIONS

A comprehensive set of physical criteria to test the
validity of an assumed mode is shown in Table 2. The
table shows a decision matrix used for checking the
mode in the previous minor iteration to determine the
new most probable mode.

It is worth mentioning that in the third row in
Table 2, an assumed free mode is correct if the
normal gap is greater than zero, otherwise the new
mode is assumed fixed. This does not imply a sliding
mode cannot be reached from a free mode, it simply
implies a sliding state must be reached by an iterative
path; free-fixed—sliding. For the special case of
smooth interface, one can go directly from free to
sliding mode.

CONSTRAINT EQUATIONS FOR RESTRAINED
INTERFACE NODES

The equation for each restrained degree of freedom
is deleted from the system leaving only the
displacements of the unrestrained degrees of freedom
to be determined. However, for restrained slave
nodes, while the degree of freedom for one direction
1s restrained and the corresponding equation is
removed, the equations corresponding to the normal
and tangential interaction forces at this slave node are
not removed from the system of equations. These
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Table 2. Decision matrix for selecting new interaction mode during minor (mode assumption convergence) iteration within

the kth major (equilibrium) iteration

Current minor iteration i for slave node S

Iteration Fixed mode Sliding mode Free mode
Fixed mode Fis>0and |Fi5| < Tha Fis>0and |Fis| > Tha Fis<0
Previous minor
iteration (i — 1) Sliding mode Fi.s>0and Fls>0 Fis<0
for slave node S T ho(Auise — Auig) < 0 T in(Bulse — Auls) > 0
Free mode g<0 Not applicable g>0

T s

i
nS

the total maximum shear force between the slave node and the interacting master element at the kth major iteration
and the ith minor iteration;

the normal component of the total interaction force at the slave node at the kth major iteration and the ith minor
iteration; it is positive if in the same direction as the outward normal to the master surface element;

Fis  the tangential component of the total interaction force at the slave node at the kth major iteration and the /th minor
iteration:

AF|s the tangential component of the incremental interaction force between the slave node and the interacting master
element at the kth increment and the /th minor iteration;

Au;s  the tangential component of the slave node incremental displacement at the Ath major iteration and the ith minor
iteration:

Auis.  the tangential component of the incremental displacement of the point of projection of the slave node on the master
surface element at the Ath major iteration and the ith minor iteration;

4

the gap between the slave node and the master interface at the Ath major iteration and the ith minor iteration; it

is negative if the slave node penetrates into the master surface element.

equations for the interaction forces are required to
satisfy force equilibrium at the interface.

TEST PROBLEMS

To examine the effectiveness of the proposed
method of analysis, several different test problems are
examined. The problems have been chosen to check
different aspects of the method. In all the analyses,
the structural elements used are those of Surana [4]
and the continuum elements are 8-noded isopara-
metric elements. The expected interacting slave nodes
are chosen and the expected interacting master
surface is discretized by interface elements compatible
with the discretization of the master body at the
interface. In all the test problems, convergence is
achieved through an adequate number of major
iterations, and one minor iteration is used unless
otherwise noted.

Problem of a beam with one pinned end and the other
sliding on a rough surface

The problem, shown in Fig. 3, is chosen for its
simplicity and to check the proposed method against
the analytical solution which is easily derived. It also
demonstrates the ability of the method to detect
“fixed” and “'sliding™ modes, and the applicability of
the method when one of the individual interacting
bodies is prone to have rotational rigid-body
movements. In this case, the initial modes of
interaction (sliding or fixed) should be assumed a
priori, otherwise a singular system of equations is

produced. The beam is modelled using one S-noded
structural element. The beam length L and material
properties £4 and EI are shown in Fig. 3. The free
end of the beam is considered a slave node and the
rigid surface is modelled using an imaginary 5-noded
interface element attached to five restrained nodes.
The friction angle ¢ between the beam and the rough
surface is 30". The sliding end of the beam is
subjected to a horizontal load P which is increased till
a maximum value of P = 0.25 is reached. This load
is then released until P reaches 0.0. Figure 3 shows

0.30 T - T
e :
moop :
1.2 5 P ' ' =
025 N W) o RS0
= rigid rough : '
surface ; . |
a0 e Lo :
S S :
0.20 ' - FRR SREREEE
o /j,.
- - 1 '
;'sliding direction|
=] . : -
x 0.15 |- P B £ R B
~ PO g P
3 P ‘,__Fr.‘ s
4
P
0.10 T
0.067
0.056 [ CR——
~
&
&
-
]
g ‘°.
0.00 —— .
0.000 0.001 0.002 0.003 0.004 0.005

Horizontal Displacement

Fig. 3. Load—displacement response of a beam with one end
pinned and the other sliding on a rough surface (E4 = 100,
EI=100/12, L =40, ¢ =30, u =tan ¢).
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Fig. 4. Load-displacement response for a vertical cantilever
contacting and separating from another horizontal one
(EA = 100, E1 = 100/12, AP = 0.05, ¢ = 0, 30).

all the data used in the analysis and also the resulting
load—displacement relationship for the sliding end of
the beam. It is shown that the loaded end of the beam
slides in the direction of loading as the applied load
increases to the maximum load P = 0.25. When the
load decreases, the loaded end remains fixed to the
rough surface until the limiting value P = 0.067, after
which it slides in a direction opposite to that of the
applied load due to the axial strain energy stored
along the beam length. The numerical solution
matches the analytical solution.

Problem of a vertical cantilever contacting and
separating from another horizontal one

This simple problem. shown in Fig. 4, demon-
strates the ability of the formulation to trace sliding
and separation under large deformations. Each
cantilever is modelled using a S-noded structural
element. The material properties and the dimensions
of both cantilevers are shown in Fig. 4. The vertical
cantilever surface is considered the master interface
while the end of the horizontal cantilever is chosen to
be the slave node. The load P is applied in equal
increments of AP = 0.05. Two cases are considered,
the rough interface with ¢ = 30° and the smooth one
with ¢ = 0°. The load—displacement response of the
loaded end of the vertical cantilever is shown. The
deformed shapes at load levels P = 2.5 and —2.5 for
the case of ¢ = 0° are also shown in the figure.

For the case of ¢ = 0, the effect of the horizontal
cantilever on the behaviour is pronounced at low load
levels. Once the slave node slides along the master
interface and the horizontal cantilever deforms, its
stiffness in the direction normal to the deformed
vertical cantilever decreases and its effect on the final
deformation is negligible. This is not the case for
¢ = 30°, as full contact between the two cantilevers

is maintained without slip, and displacements are
substantially reduced.

Problem of a long vertical cantilever contacting
another distant shorter one

Both the previous problems show bodies initially in
contact. The contact is maintained at one node which
is easy to trace and visualize. The third problem deals
with two bodies initially separate, so that a contact
surface is formed after load is applied. The two
cantilevers have identical materials and are modelled
using S5-noded structural elements. The long
cantilever is modelled using five structural elements
and is chosen to be the master body with its surface
defined along the cantilever length. The short
cantilever is modelled using three structural elements
and its nodes are chosen to be the slave nodes. The
case of smooth interface ¢ = 0° is considered.

The problem dimensions, material properties and
model discretization are shown in Fig. 5. The
load—displacement response at the loaded end of the
long cantilever is shown as well as the deformed
shapes at load levels M = 3.5 and 5.0. At load level
M = 3.5, there is only one point of contact between
the cantilevers. At the higher load level M = 5.0, a
contact surface had developed on which slip occurs.

Problem of a cantilever contacting a rigid circular
surface

A more complicated problem of a cantilever
bending onto a rigid circular surface is considered in
Fig. 6. The cantilever is considered the slave body and
is modelled using five 5-noded structural elements.
The smooth rigid circular surface is considered the
master surface and is modelled using six 5-noded
imaginary interface elements attached to 25 re-
strained nodes. The material properties of the
cantilever and dimensions of the problem are shown
in Fig. 6. The deformed shape is illustrated at load
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Fig. 5. Load-displacement response of the loaded end of a
vertical cantilever contacting another distant shorter one
(EI=1.0, EA =12 x 10*, AM = 0.05, ¢ =0.0).
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Fig. 6. Load-displacement response of the loaded end of a
vertical cantilever contacting a rigid circular surface
(EI=1.0, EA=1.2x 10", ¢ = 0.0, AP = 0.005).

P =35 and the load—displacement response at the
cantilever loaded end is shown. It is shown that as the
applied load increases, the length of the contact
surface increases and the free length of the cantilever

Continuum 2

Cantilever

I \:—- > 2L
L ¢

Continuum 1

decreases. This increases the stiffness of the cantilever
and consequently decreases the rate of change of
displacements.

Problem of a cantilever resting against an elastic body

The final problem is presented to demonstrate
certain capabilities and the limitations of the
interaction analysis in more detail. The cantilever is
modelled using twelve 3-noded structural elements
while the elastic body is modelled using 8-noded
isoparametric continuum elements. All the dimen-
sions and material properties (i.e. Young's modulus
E and Poisson’s ratio v) are shown in Fig. 7. The
cantilever is considered the master body with its
surface defined along its length, while the elastic body
nodes at the cantilever interface are considered the
slave nodes. The case of a smooth interface is
considered.

Trials with different sizes of load increment and
different numbers of major and minor iterations are
considered. The results are show in Figs 8-10. We can
draw some conclusions from the solution of this
problem:

(1) As in all incremental non-linear analyses, the
size of the load increment may affect the accuracy of
the results. Figure 8 shows that for load increments
0.01 and 0.02, the solution is indistinguishable which

10P -

0.5P

ANNAN
X \/ 2L

P=1.25

Fig. 7. A cantilever supported on an elastic body (EI = 1.0, E4 = 10*, E, = 50.0, v, = 0.3, E> = 100.0,
V2= 03)
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implies convergence to the correct numerical sol-
ution. Decreased accuracy of the solutions is also
clear for the load increments 0.10 and 0.15, although
there is numerical convergence. Decreased accuracy is
not due to inappropriate modelling of the interface
behaviour, but it is due to the fact that accurate
material modelling in the updated Lagrangian
formulation requires small load increments.

(2) The bigger the number of major (equilibrium)
iterations the smoother the load—deflection be-
haviour. This result is because a decrease in residual
force accelerates convergence to the correct inter-
action modes (Fig. 9). This can be seen from the slope
discontinuities in the load—deflection curve obtained
using one major iteration instead of five. Increasing
the maximum number of minor iterations from five
to 10 had no effect on the solution since convergence
occurred in less than five iterations.

(3) Figure 10 gives results for alternatively 1, 2 and
5 minor iterations in the case of a large load
increment. 0.15. For | and 2 minor iterations, no
mode convergence is achieved at high load levels
(P > 0.95). When five minor iterations are used, the
solution is closer to that obtained using a small load
increment. This demonstrates the advantage of using
multiple minor interations which ensures convergence
for solutions obtained using large load increments for
which significant changes in interaction modes may
occur.
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Fig. 11. Effect of the change of the master and slave roles.

The choice of the slave nodes and the master
surface needs careful consideration as it may affect
the results. To illustrate this point, two cases are
considered where master and slave bodies are
interchanged. The first case is that examined before,
while the second case involves slave nodes along the
cantilever length and the master surface defined along
the continuum boundary.

Figure 11 shows the load—displacement response at
the tip of the cantilever for the two different
definitions of master and slave bodies. In the second
case, a sudden change in the behaviour is noticed
once each new slave node starts to interact with the
master surface. Points such as the corner of an elastic
solid are best treated as slave nodes, so they can
steadily traverse the surface of the other body.

CONCLUSIONS

Some final conclusions may be drawn from this
study:

(1) The method is applicable to a very wide range
of applications with interaction involving large
deformations.
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(2) The method is applicable when one or both
interacting bodies are prone to rigid body move-
ments.

(3) A study was conducted to examine the effect of
various numerical parameters (e.g. increment size and
number of major and minor iterations). This study
showed that using a small number of minor
iterations, in cases where significant mode changes
occur or when large increment size is used, may cause
the solution to depart from the true one.

(4) Under some circumstances, like those where it
is difficult to distinguish between the free and fixed
modes, no mode convergence is achieved and the
minor iterations oscillate between two interaction
states (open and closed interface). The same
behaviour is reported by Katona [2] in his study of
small deformations.

(5) In some cases, the choice of the master
interface and the interacting slave nodes may affect
the solution. Careful consideration should be given to
surface and nodal compatibility when defining master
and slave boundaries.

(6) The method can also be applied for multi-inter-
acting bodies (although this is not shown here). In

that case, the master interface would consist of a
number of separate discretized interfaces, from which
the correct interface element would be selected for
each slave node.

Acknowledgements—Support for the research was provided
through research and equipment grants from the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

1. K. J. Bathe and A. Chaudhary, On finite element
analysis of large deformation contact problems. In:
Unification of Finite Element Methods (Edited by H.
Kardesuncer), Chap. 5. pp. 123-147. Elsevier, North-
Holland (1984).

2. M. G. Katona, A simple contact-friction interface
element with applications to buried culverts. Int. J.
numer. analyt. Meth. Geomech. T, 371--384 (1983).

3. J. K. Kodikara and I. D. Moore, A general interaction
analysis for large deformations. Int. J. Numer. Meth.
Eng. 36, 2863-2876 (1993).

4. K. 8. Surana, Geometrically non-linear formulation for
two-dimensional curved beam element. Compui. Struct.
17, 105-114 (1983).



