Pnoceeding§ Ninth Australian Conference on
the Mechanics of Structures and Materials
The University of Sydney, August 1984

Postbuckling of Buried Flexible Tubes

1.D. Moore

Lecturer, University of Newcastle

SUMMARY : : 0
analytic solution to the problem is developed.

The postbuckling behaviour of circular elastically-supported tubes is examined, and an approximate
The simplified analysis is shown to be an efficient and

effective alternative to more costly numerical analysis.

1. INTRODUCTION

It has been recognised for some years that when
long metal tubes are buried, the weight of the
overlying soil generates significant hoop compres-
sijons which may act to destabilise the flexible
structure. Many workers have sought to determine
the strength of these soil-structure systems by
solving the classical stability problem (e.g.
Forrestal and Herrmann (1965), Cheney (1976),
Moore and Booker (1983). The critical stress
level so obtained does not, however, provide a
complete picture of cylinder strength. A more
complete analysis of both the prebuckling and post-
buckling response is required if the likelihood of
excessive deflection and structural yield, as well
as the importance of postbuckling strength can be
determined.

Recently the author has obtained simplified analytic
solutions for the critical distributions of hoop
compressions which act to destabilise elastically
supported tubes, Moore and Booker (1983). Both
smooth and rough interface behaviour was considered
for tubes destabilised by uniform distributions of
hoop compression. Geometrically non-linear analysis
using the finite element method has also been under-
taken, Moore and Booker (1984), and the postbuckling
response of flexible elastic tubes has been examined
in detail.

As a result of this work, the fundamental nature of
tube postbuckling has been clarified, and the
linearised analytic solutions are now extended so
as to predict both the prebuckling and the post-
buckling response of elastically supported tubes.
The validity of the approximate analytic solution
is then established on comparisen with the more
extensive numerical solution.

It is demonstrated that the simplified analytic
postbuckling solution can be used to satisfactorily
predict the response of elastically supported tubes
at load levels up to twice that which is critical.
Both the deformations and the bending moment
distribution can be determined, so that this
approximate analytic solution to the elastically
supported tube problem is an efficient and
effective alternative to more costly numerical
analysis.

2. STATEMENT OF PROBLEM
The circular tube of radius a, uniform thickness

t, Young's modulus E. and Poisson's ratio v,
Figure 1, is assumed to be very long, so that it

deforms under conditions of plane strain. The tube

is assumed to be thin (t/a << 1) so that the mem-

brane extensions are negligible and a simplified

?trucgural theory can be employed, Moore and Booker
1983).
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FIGURE 1: Co-ordinate Description

The supporting medium is assumed to be a singie

phase isotropic material such as a soil or rock mass,
with an incrementally elastic behaviour character-
ized by two constants: Young's modulus E. and
Poisson's ratio vg .

Sefore insertion of the tube the continuum is

assumed to be prestressed with uniform vertical

oy and horizontal o = Ksy field stresses, which
induce the uniform noop force No (compression
positive), in the tube.

Two alternative conditions will be assumed to
characterise the continuum-structure interaction at
the interface.

(a) A perfectly rough condition, resulting in
complete compatibility of radial and circum-
ferential displacements, and full transmission
of normal and shear tractions across the inter-
face.

A perfectly smooth condition, where shear stress
is not transmitted between the structure and
ground, and where circumferential displacements
are not continuous, due to interfacial slip.
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The real interface condition for a buried.tube will
be somewhere between these two extremes since there
will in general be some finite limit to the shear
stresses that can be developed between ground and
structure,

3. LINEAR RESPONSE

For this circular tube supported by an elastic
continuum, both the structure and the continuum
contribute towards the resistance of the system to
any applied loads. In this section details are
provided of existing linear analytic solutions
which can be used to determine the tube response
at load levels below that which is critical.

If the normal and circumferential displacements of
the tube midsurface are w and v respectively,
Figure 1, then it proves convenient to subdivide
them into harmonic components

Wy + § W_ cosne
0 n=2 N
V_ sinne
nZZ n
(the terms Vo» Wy and V; have not been included

since they describe the rigid body motion of the
circular cylinder).
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The uniform radial response of the buried tube No,
is largely unaffected by any initial stresses in
the structure. A simple static analysis of the
continuum-structure system (e.g. Einstein and
Schwartz (1979)) can thus be employed to find an
expression for the uniform contraction W. in terms
of the uniform component of the applied %raction
at the interface

o (1+K) a
Woo v (2)
o Z2(H+ 2G,)
where
Ho= Et/(1 - v,%) (3a)
is the hoop stiffness of the tube and
Gy = E/[2(1 + v )] (3b)

is the shear modulus of the elastic continuum.

The nonuniform deformation of the tube, represented
by the terms (W,, V,, Wi, V3 ...), is however
influenced by tEe hoop gorce N, and a more complex
analysis which takes account of the destabilising
effect of the initial hoop compressions is required,
Such a theory was developed by Moore and Booker
(1983) for the analysis of tubes under the influence
of uniform hoop compressions, and that solution is
now described in detail.

Assuming that membrance extensions are negligible
(Moore and Booker (1983))

=1y
86 a ‘26
the linearised equations of equilibrium for a
buried tube of flexural rigidity

i.e. +w) =20 (4)

D = Et/012(1 - vgz)] (5)
solved for the harmonic coefficients of radial
displacements W,, are
2 (6. = 1 /n)
W = n n n (6&)
" (n -1) (nZD/a4 - No/a2 + Bn)

62

if the load behaviour is constant directional or

. n2 (on - Tn/n)
" fn? (ot - (N sad) eP1T + )
(6b)
if the load behaviour is hydrostatic. Prebuckling

deformations occur as a result of the normal o
and tangential v tractions applied at the interface
where these have the harmonic decompositions

g =

il ) g

) cn cosns

n

T sinng
o M

Hesg

n

The continuum contributes towards the static stiff-
ness of the tube through the elastic restraint
coefficient B which takes the value

2n(1-v_)-(1-2v_)
26,2 _3?__:a______§_ :
(n -1)(3-4\)5)

8" =

when the cylinder is rough and
2

(nz-l) [;n(l-v )+ 1< 2v] (9)
s s

for smooth cylinders.

Once the normal deformation coefficients W, have

been determined the zero extension condition (4)

is used to obtain the circumferential deformation
coefficients

V, = -W/n

) (10)

The non-uniform interface tractions o and T act to
disturb the buried tube from its initial unde-
formed position, and two sources of such disturb-
ances will be considered in this work (Moore and
Booker (1983)). Firstly, the presence of non-

hydrostatic field stresses o, and oy = Ko, induces
elliptical tractions with coefficients

0, = o (1 -K)/2

T, = ov(K -1)/2

Any initial geometrical imperfections in the
circular shape of the tube will also disturb the
equilibrium of the system. The response of a tube
with initial radius

ro= a+e (12)
such that
e = ] e, cosne (13)
n=2
and
L[ 4)
&= J € cosne de (1

0

can be conveniently found using the theory which
has been presented for perfectly circular tubes,
in conjunction with the disturbing tractions

so, = Ny < (n? - 1)7a (152)




Arn=0

stress resultantsin the ring can also be found

once the deformed shape has been determined. In
articular, the bending moment M can be expressed
as a function of the deformation

-0 ] (n%-1) W_ cosne
n
n=2 .

M =

4. EXAMINATION OF TUBE POSTBUCKLING

The linear continuum-structure interaction theory
which has been summarised in the previous section
can be used to determine the respanse of flexible
cylinders supported by an elastic medium. ‘As the
critical load level is approached, however, the
deflections predicted become indeterminate, since
the denominator of (6) becomes zero. This occurs
pecause nonlinear deformation terms have been
neglected in the differential equations of
equilibrium for the circular tuoce. The redist-
ribution of stress resultants associated with the
critical deformation has also been neglected in the
formulation. As a result the theory only performs
adequately for load levels below that which is
critical, and it fails to provide a solution in
the postbuckling region.

More complete nonlinear analysis (using the
numerical method described by Moore and Booker
{1984)) provides a solution for the elastically
supported tube problem in both the prebuckling and
the postbuckling regions. A number of solutions
to such problems will now be considered in greater
detail.

A rough slightly imperfect tube

(r=a(l + 0.001 cos8d))

is supported by_an elastic medium with relative
stiffness D/Ega” = 4.579 x 10-4, Poisson’s ratio
vg = 0.3, and”is uniformly loaded with a normal
traction which behaves hydrostatically. Eight
critical waves develop around the cylinder,
Figure 2, and the radial deformation at various
points around one half-wavelength of the critical
deformation is shown in Figure 3.
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FIGURE 3: Radial Deformation of
Elastically Supported
Tube D/Egad = 4.575 x 107%,

The initial deformation of the tube is predominantly
composed of the harmonic bending deflections
associated with the initial geometrical imperfection.
However, a purely harmonic deformation about the
initial position of the structure must have assoc-
jated with it a gradual increase in the circum-
ferential length of the tube. Since the tube is
stiff in hoop extension and the change in length

is restricted to the hoop compression 2 Wg, a
general contraction W, of the tube into the cavity
must occur in conjunc%ion with the bending deform-
ation. This uniform contraction is clearly seen

in both Figures 2 and 3, and since it is resisted

by the continuum surrounding the tube, considerable
postbuckling strength is developed.

To further illustrate this aspect of tube behaviour
the distribution of hoop compressions around the
cylinder is shown in Figure 4. The uniform hoop
compression steadily increases in the prebuckling
range as the in-situ stresses are released onto the
flexible cylinder, but as the critical loads are
approached the excess uniform tractions are redis-
tributed to the continuum, and the uniform component
of hoop compression remains below the critical level.
The significant harmonic components of hoop comp-
ression associated with the harmonic deformation
then develops.

5. ANALYTIC MODEL FOR POSTBUCKLING

For the approximate analytical description of
elastically supported tube postbuckling, the
mechanism by which the continuum-structure system
responds will be assumed to be the sum of two
components:

(a)

The linear continuum-structure interaction
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response, as described by the theory out-
lined in section three.

A nonlinear contraction of the structure
into the cavity, as a result of the “linear"
deformations and the high hoop stiffness of
the tube.

(b)

The contraction will be assumed to occur so that the
circumferential length of the tube

1

2
L de
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f (r2 + (ar/ae)z)
0

equals the initial length plus any hoop extension
predicted by the linear theory

(17a)

L= 2n(a + W) (17b)
The radius of the deformed tube
rEatlytu )+ ) (sn + W) cosne (18)
n=2
The hydrostatic component of field stress
O = (ov + oH)/Z (19)
is composed of two parts
. _a b
om = cm + om (20)

where the superscripts a and b assign these
components to the linear and nonlinear mechanisms
respectively. The hydrostatic stress omd is
directly related to the linear coefficients W WMo,
Vo, W3, V3, -+... through the equations of equi?ibrium
gnd zero extension (6) and (16) respectively. The
nonlinear" component onb is related to the non-
Tinear contraction Ro according to the resistance

of the cogtinuum to uniform deformation.

Uma
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The circumferential length condition (17) provides
a relationship between the linear and nonlinear
componante

6. PERFORMANCE OF APPROXIMATE SOLUTION

A simplified postbuckling theory has been developed
for elastically supported tubes, and its validity
now needs to be examined through comparisons with
the more complete nonlinear numerical solution.
Figures 5 to 9 show the results of the study, based
on the uniform problem, which has already been
introduced (Figures 2 to 4) and some additional
problems involving stiffer ground. On the basis

of this work, a number of conclusions have been
drawn.
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FIGURE 5: Radial Deformation of
Elastically Supported
Tube D/Ega” = 4.575 x 10-4.

The simplified analytic solution can be used to
satisfactorily determine the postbuckling response
of the bonded elastic tube under uniform pressure,
Figure 5. The numerical and analytic solutions are
almost identical in the prebuckling and immediate
postbuckling zones, but the simplified theory
appears to underestimate the continuum resistance
to the uniform "contraction" of the tube, so that
deformations are overestimated at higher stress
levels.

When the elastic medium is stiffer, the critical
harmonic increases, so that the wavelength of the
critical deformation becomes shorter. Figures 6

and 7 show the results for two such problems, where
the critical harmonic n =19 and 40 respectively.

The responsesshown in Figures 5 and 6 are very
similar, but for the problem involving a very stiff
continuum, Figure 7, the simplified analytic solution
appears to slightly underestimate the structural
deformations at high stress levels.
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the SImpiiTiea analytic theory can also be used to
predict the bending moments which are generated in
the uniformly loaded tube, and comparisons betweesn
numerical and analytic values are shown in Figures
8 and 9. The first figure shows the bending

moment distribution around the tube at two load
Tevels below that which is critical, and the two
solutions match closely. Figure 9 shows a compari-
son at these higher stress levels, and it is
apparent that the simplified theory does not per-
form quite as well in the postbuckling region. The
numerical results indicate that the tube response
is more complex than the simple harmonic bending
assumed in the analytic model, as the length of

the outward buckle tends to shorten. The magnitude
of bending moment is then greater at the centre of
that outward lobe than at the centre of the inward
buckle. Nevertheless, a reasonable estimate of the
maximum bending moment can still be made using the
simplified theory.
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7. CONCLUSIONS

The postbuckling response of circular elastically
supported tubes has been examined, and a simplified

analytic solution to the problem has been developed.

The influence of uniform distributions of hoop
compression has been considered, and as a result
of a comparison between numerical and analytic
solutions it can be concluded that:

(a) The prebuckling deformations and bending
moments for an elastically supported tube
can be determined very accurately using
the simplified theory.

(b) ~ The important elements of tube postbuckling
have been incorporated in the approximate
analytical solution, since the solution can
be used to satisfactorily predict the response
of elastically supported tubes up to about
twice the critical load level.

(c) The solution will permit substantial savings
in computational effort, by providing a
reasonable alternative to more costly
numericdl solutions.

(d) The solution would facilitate studies into
the postbuckling behaviour of elastically
supported tubes, where the influence of
ground stiffness, interface roughness and
initial geometrical imperfections are
investigated.
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