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SYNOPS1S In the study of underground openings it is necessary, in all but the simplest
situations, to use an approximate -numerical procedure, such as the finite element method. 1In
conventional -analyses it is usually necessary to utilise an extensive finite element mesh to

adequately model the response of the surrounding material.

In this paper a circular boundary element which overcomes this difficulty is developed. The materia
outside the circular boundary is approximated by an infinite number of annular regions with a
constant ratio of interior to exterior radius. Each annulus is divided into a number-of -identical
finite elements. The boundary stiffness of the complete body is then found analytically from the
stiffness of these constitutent elements.

The adoption of this boundary element ensures accurate modelling of the behaviour of deep undergroun

openings and permits substantial computational savings. Its use.is illustrated by a variety -of -
problems. . .

INTRODUCTION : - there are difficulties associated with both the

nunber of terms necessary to obtain an adequate
It is often necessary to determine the distribu- Fourier series representation and the conformity
tion of stress in the neighbourhood of an undex- - of elements based, on such an approximation, and
ground opening. Analytic solutions have been conventional elements, and for these reasons the
found for certain, simple cases on the assump- approach adopted in this paper was preferred.

tion that the surrounding material is an iso-
tropic elastic solid. (Savin (1961),
Muskhelishvili (1963) Obert and Duval (1967),
Hoeg (1968)). However for more complicated
situations involving complex geometries or
material behaviour it is usually necessary to
obtain solutions by using an approximate :
numerical technique such as the Finite Element
Method, Zienkiewicz (1977).

In an conventional static finite element analysis
it is not normally possible to take into account
infinitely distant boundaries although this is
often done for the dynamic analysis of a hori-
zontally layered soil, Lysmer and Waas (1972).
More recently this has been applied to a variety
of static and dynamic problems Booker and Small
(1979), however, for most analyses of deep
underground openings it is usual to adopt an
extensive finite element mesh.

Boundary. \
. oo

Fig. 1 Infinite Element Fig. 2 Finite

In this paper the above difficulties are over- . Element Megh
come by the development of the circular boundary chqrporatxng
element shown in Fig.l. The stiffness of this ' Infinite Element

'su?er element"” can easily by incorporated into
a finite element analysis and used to analyse
problems of the type illustrated in Fig.2 invol-
ving complex geometries and materxial problems.

A . . PROBLEM DEFINITION
It is interesting to note that an element similar

to the one developed in this paper may be con- Consider an underground opening, perhaps of the
structed from the well known analytic solutions type illustrated in Fig.2. It will be assumed
to the problem of a circular hole in an infinite that the opening is sufficiently deep that the
elastic body (Mushkhelishvili (1963)), however boundaries can be considered infinitely remote.
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It will also be assumed that the underground
opening is sufficiently long that conditions of
plane strain prevail. Also it will be assumed
that to sufficient accuracy
elastically and that there are no significant
changes in geometry so that small strain theory

is valid.

Suppose then that the elastic continuum is divi-
ded into two portions as indicated in Fig.2.

The inner portion is divided up into finite
elements and the stiffness found using conven-
tional theory, Zienkiewicz (1971), the outer
region is broken up into quadrilateral elements,
as shown in Fig.l. The theory is not restricted
to the case of 4 node quadrilateral elements and
can, for example, be easily extended to 8 node
isoparametric elements.

The set of N ciréumferential nodes are assumed
to be evenly spaced around the circular boundary.
It proves convenient to develop the stiffness in
teras of the radial and circumferential displace-
ments (ui and vi)_- see Fig.l. The elements in

the inner region are linked to the elastic
continuum through these nodes by the conditions
of force equilibrium and displacement compati-
bility.

The element exhibits a polar periodicity which
_can be used to simplify the problem solution. In
a closed form analysis of this problem the
continuous displacement functions can be repre-
sented as a Fourier series in the angle 6. It is
possible to employ a similar representation for
the discrete case. Consideration of Fig.l

shows that each of the quantities (u, v, r, s)
has a period of N, viz:

(80 B)pyn = (8, D)y

vwhere § {u, V)T and £ = (r, t)T

These functions may therefore be represented as
a discrete Fourier series in the form:

. N
(8, £y =,§— T N (&, E), exp(+ iakf) (1)

2=
T T
where 8 (u,v) ", F = (R,T)” and o 2n/N

and the Fourier coefficients are given by:

N
(8, B) ¢ I (&0 £y expleiaka) (2)

1

It will be shown in the following sections that
the introduction of the discrete Fourier
representation leads to an upcoupling of the
various modes so that the stiffness associated
with each mode may be found separately.

g?VELOPMENT OF STIFFNESS MATRIX FOR A POLYGONAL
NG

In order to develop the stiffness of the infi-
nite element we first need to calculate the
stiffness of the annular region shown in Fig.3.
This ring is made up of N identical elements of
the type shown in Fig.4 each having a stiffness
matrix of the form:

the material responds
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where A, C, B, D are symmetric matrices,

Y, are the vectors of radial displace-

R ments for the sides k,:% respec-
tively

Vi g are the vectors of tangential dis-

T placements on the sides k, 2 res-
pectively )

Iy 1‘ are the vectors of radial nodel

T force for the sides k, % respec-
tively (due to the element kR)

T e are the vectors of tangential.

TR . nodal force for the sides k, %
respectively (due to the element
kL)

and k = 2 + 1.

Component

Fig. 4
Quadrilateral Element

Fig. 3-. Polygonal
Ring Composed
of Quadrilateral
Elements

The nodal forces acting at the nodes of a par-
ticular line consist of contributions from the
two adjacent elements and thus, using Eq. (3),
it is found:

C(Ei-x + E£+1) * 2A Yo T K(YE+1 - Yﬁ-l);r

~%
~ (&)
T =
SKTGug_ m gy, ¥ 2BV DU, H v, )Y
where the circumflex indicates the applied nodal
force. Now on introduction of the Fourier repre-
sentation, (3) these relationships become:
2a+2cc Juy + C -2ixsjg.j = By
T (5)
C +2ik'g] uy + (2B + 2¢D7] vy o= Ty
where ¢ = cos(aj), s = sin(aj)




and the stiffness equations (4) separate into N
sets of two equations, each with two unknowns.
The analysis is faciliated by the change of
variable ~

;0= 8 (6)

and equation (5) becomes:

2A + 2¢C , - 2Ks Uj Rj
+ 2 xTs, 2B + 2D Wy | Tl M

For our purposes it is convenient to reorder the
elements of the displacement and nodal force
vectors using the permutation matrix P defined
by.:

T T R o S ¢ SRR, S I, ¢
[ijl ij+1] = E“J'Jm' gjm-ﬂ’ ij' vfjm_*,up (8)
where ij 1s (Ujm’wjm)T the vector of Fourier

coefficients for the node polygon m with -a

similax definition for ij+1.

Equation (7) then becomes -

D. -

r& . Y. Dim

1<jm j 3
= = ks
[?jm+1 wj X%j 9jm+x J 9jm+1

T _
where ?jm =

Bjm
(9)

(ij,S'jm)

T 232 + 2¢cC 2Ks

and K. P T P
J -2K"s 2B+ 2¢D

DEVELOPMENT OF GENERAL BOUNDARY STIFFNESS

Suppose now that the consecutive rings making up
the infinite element are chosen so as to have
the same aspect ratio (i.e., same ratio of inner
to outer radius) then it is well known that they
will have identical stiffnesses. " At any
interior node there is no applied nodal force
and so equation (10) leads to the recurrence
relation:

¥l D

3 + (Xj * ¢j) Dim * wj 9jm+1‘= 0

jm=-1 3 (10)
This recurrence relation has solutions having

the form:

_ ,m
gjm = A Q (11)
where A, A satisfy the equation:
[x"v'l.' +o(xs + 0s) o+ A‘fj:'l\ =0 (12)
J J J ~

this of course implies A must satisfy the
equation

det X ¥, . -1?]::
e ( *3 + (Xa A ‘W 0 (13)

+ ¢.) +
J) J
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If this determinant is expanded, it .is found
that, the resulting eguation may be arranged as
a guadratic in (A +.1/3), and consequently,
that -equation (13) in general has four roots
which may be written ’

Ai = {AIIAZ:IA3IA‘>}

. S, . (14)
with (As,X) = (71 ,03) and [X|<1.
Now if the vectors Qi are defined to be non-
trivial solutions of the equation:
r ¥t ( 6.) + A, vl A =0 (15)
. .+ o+ b + . Y.l AL = {
i ¥ X3 T RS LS

the complete solution of the recurrence relation
(10) may be written .

Dym = I, AT ae)

where A,, ..., A, are arbitrary constants.

It is clear that in order that the .sclution may
remain bounded at points remote from the hole,
viz. as m + <, the coefficients A,, A, must
vanish.. The remaining coefficients may then-be
found as .follows: .

For the innermost ring equation {16) becomes:
D, = QA
~Jo ~

and A? =

(17a)

where @ = [4;,4,] (a,,2;) (17b)
The Fourier coefficients of the nodal forces

acting on the inner most ring are

. ¢. D + VY. D, 18
930 J ~Je J - (18)
and thus we obtain the boundary stiffness
P . = k. D. (19
9]0 Jp "':|° )
where
k. = o, +v.27t |20 o (20)
Jo J J 0 1,

It is not difficult to establish that the
boundary stiffness matrix is real symmetric and
positive definite.

APPLICATIONS

The theory developed in the previous sections
will now be illustrated by application the the
behaviour of lined and unlined circular and
elliptical openings in an elastic material.
The effects of hydrostatic and non-hydrostatic
field stress will be investigated.

Errors Involved In A Conventional Analysis

To illustrate the errors involved in a conven-
tional analysis consider a circular tunnel of
radius a opened in an elastic material which is
initially in a state of hydrostatic stress.




Opx = °yy = pP. As in well known the deflections

and the changes in stress may be calculated by
removing the radial traction p acting on the
boundary r = a. Suppose now that in a conven-
tional finité element analysis the body is
discretised by dividing the elastic body up into
a-number of rings with constant aspect ratio
(ratio of inner to outer radius) and dividing
each annulus into n four noded isoparametric
elements with an aspect ratioc of approximately
unity, and assuming that a rigidly fixed outer
boundary exists at r = b. The results of such
an analysis are shown in Fig.5 where the
percentage error in the tunnel deflection is
plotted as a function of the position of the
assumed outer boundary. The analytic solution
and the solutions to the problem with b =
using the boundary element are also shown in
this figure and it may be observed that the
conventional numerical solution to the problem
is quite sensitive to the assumed position of
the outer boundary. Thus if an outer boundary
is taken at b/a = 5 the error in all conven-
tional analysis is of the order of 12% whereas
if a boundary element based on a division of
each annulus into 20 elements is placed at the
inner boundary the resulting solution is only

1% in error. Thus the use boundary elements has
the advantage of leading to a considerable gain
in accuracy as well as the more obvious effect
of considerably reducing the number of equations
to be solved and thus reducing computational and
storage costs
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Fig.5 Effects of Finite Radial Boundary on
Radial Displacement

Circular Cavity with Non-hydrostatic Loading

A problem of some importance to geotechnical
engineers concerns the stresses and displacements
which result when a deep tunnel is driven through
a soil or rock deposit with a pre-existing non-
hydrostatic field stress. Kirsch (1898) deter-
mined the stress distribution around a circular
hole within a flat plate subjected to a uniaxial
state of stress. This solution has been
extended, with suitable adjustments to elastic
parameters, to provide the stresses and displace-
ments occuring in the vicinity of a deep tunnel,
Terzaghi and Richart (1952).

Consider the elastic region between an internal
circular cavity of radius a, and an external
boundary of radius l0a. The external boundary

56

is treated as being fixed, or as the internal
boundary of the circular boundary element, with
the intermediate region subdivided into an eight
noded isoparametric finite element mesh. The
numerical analysis was carried out under condi-
tions of field stress Py = l,pv = 0 with a

number of different finite element discretisa-~
tions and the two outer boundary conditions.
The tunnel boundary conditions, those of zero
normal and shear stress, are obtained from the
initial stress state by applying appropriate
stress increments i.e., normal and tangential
tractions at the tunnel surface,

o, = -[pgcos?e. + pysinzej, T = (py-p,)cosdsin®

The stress increments obtained from the analysis
are added to the initial field stresses to give
the resulting stress state around the cavity.
Through the use of superposition, the cavity
response under any field stress conditions can
be obtained from this analysis. The numerical
solutions for displacement and stress are shown
in Figs.6 to 8, and these satisfactorily
approximate the analytical solutions which are
shown in each of the figures. The effects of
mesh design and external boundary condition on
the displacement fields are also illustrated.
The cavity response could, of course, be
obtained through the use of the circular
boundary element directly at the internal
boundary.
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Fig.6 Behaviour of Circular Cavity under

Field Stress




— ANQLYTHC

8 € Numerical

o

04
03

o2

Fig.7 Horizontal and Vertical Stress
on the Horizontal Axis

L

I i i . L
w o & 00 &0«
e

el
v 20 X

Fig.8 Stress Distribution Around the
Circumference of an Opening

Elliptical Tunnel

Non-circular openings can also be analysed
numerically using the boundary element, and the
analysis can be extended far beyond those
problems which have tractable analytic solutions.
In order to demonstrate the analysis of non-
circular cavities, one with an attendant
analytic solution is now considered.

Neuber (1937) developed the solution eguivalent
to Kirsch (1898) for an elliptical hole.
Terzaghi and Richart (1952) give details of
Neuber's solution. In the numerical analysis
the elliptical tunnel is modelled using an
elastic region with an elliptical internal
cavity and a circular external boundary, Fig.9.
The field stresses used are again Py = 1 Py [¢]
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and are applied in the same was as those for the
circular tunnel.

Imitiot
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Fig.9 Mesh for the Determination of
Stresses About on Elliptical Cavitv in an
Infinite Contirnuum

The vertical stresses on the horizontal and
vertical axes are plotted in Figs.10 and 1l.

The external boundary is again considered under
two conditions - fully fixed and as the internal
boundary of the circular boundary element.
Figs.10 and 11 attest to the efficiency and
accuracy of the numerical solution using the
boundary element. The stress fields are fairly
accurately modelled even where the stress
gradients are severe, as they are on the
vertical axis at the tunnel surface, Fig.ll.

The effects of a fixed external boundary on the
stresses, at this distance are again quite
severe - as is shown in the figures. The effect
is obviously significant, and the external
boundary would need to be repositioned further
from the cavity, with a subsequent increase in
the size and cost of the analysis.
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Fig. 11 Vertical Stress on Vertical Axis
for an Elliptical Cavity

Lined Tunnels

When tunnelling in weak soil and rock deposits
it is generally necessary to line the tunnel

as it is constructed. A number of authors have
investigated the elastic response of lined
circular cavities, Hoeg (1968) and Muir-Wood
(1875) .

The problem considered consists of the construc-
tion of a circular cavity radius a, in an infi-
nite elastic space with pre-existing non-
hydrostatic field stresses. The lining, with
elastic properties Eg; vy and thickness t is

assumed to fully adhere to the elastic mass.
Construction of the tunnel lining is assumed to
take place prior to the removal of stress from
the cavity surface, and thus boundary tractions
identical to those used previously are applied
to the internal boundary of the lining. A
solution to this problem has been found using

the classical theory of elasticity,* and compared

12 T T T

Anatytic solution
FE. solution

E, (€ «1720
Ve v «0.38
Koe03%

1/ «0.042

o2

Il i Il

Fig.l2 Radial and Tangential Stress for

Lined Tunnel

*It was not possible to obtain a comparison with
Heog"s (1968) solution which appears tobe in error.
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with the corresponding numerical solution.
For the particular case of co-efficient of
lateral pressure K, = 0.35, thickness to ratio

t/a = 0.042, ratio of elastic moduli El/E = 1720
and Poisson's ratios vy =V = 0.35.

along the horizontal and vertical axes are
shown in Figs.12 and 13. Radial displacements
along the axes are given in Fig.l4. The
numerical results again agree closely to the
analytic solution.
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Lined Elliptical Tunnel The lining used has constant thickness t/a =
0.03, modular ratio El/E = 1000 and Poisson's

The circular boundary element can of course be .
used to examine problems not easily treated ana- ratio vy = v = 0.25. In the analysis the
lytically. Such a problem is that of a lined
elliptical cavity. The elliptical tunnel con-
sidered has similar geometry to the one already
investigated, with horizontal axis a sinh (0.6)
and vertical axis a cosh (0.6). Pre-existing
field stresses considered are o, and Oy = Ko Oy

with three values for Ko - 0.5, 1.0 and 2.0.

pboundary element is used at a distance r/a = 1l.6.

To illustrate the effects of lining the tunnel,
Figures 15,16 show the contours of major and
minor principal stress 0,/0, and 0;/0,, in the

soil surrounding the cavity. The stress states
in the lined and unlined cases are shown, for

Contours of 8,/ Contours of @ /0,

Comours of Gy/d,

Fig. 15 Contours of Principal Stress for Unlined Tunnel

Contours of oyK, Contours of @y /0, Contours Of 0310,

Fig. 16 Contours of Principal Stress for Lined Tunnel
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the three values of KO chosen. For the unlined

cavity significant concentration of stress
occurs around the opening - particular for the
cases Ko = 130 and 2.0 where the high horizontal

field stress is concentrated at the crown, the
location of highest radius of curvature in the
opening. The use of a lining significantly
reduces the stress concentration which occur.
This stress redistribution also results in some
tensions developing close to the lining for the
case where KO = 2.0.

Due to the lining shape there is a change of
sign of the resultant moment in the lining, shown
in Figure 17b. A peak negative mcment (clock-
wise) occurs at the crown of the tunnel, and

this drops quickly, changing sign with the major
portion of the lining experiencing an approxi-
mately uniform positive (anticlockwise) moment.

A compressive axial load, Figure l7a, (likely

to cause instability) is also induced in the
lining, this is fairly uniform for the K, - 0.5

and 1.0 cases, but peaks at the crown for the
Ko = 2.0 case.

)

Fig. 17a Axial Force in the Lining-lined
Elliptical Cavity

t-004

-002

002

002

Fig. 17b Moment in the Lining-lined
Elliptical Cavity

This straightforward elastic analysis illustrates
many of the features of this type of structure,
and the numerical procedure could, of course,

be extended to model the effects of soil strength,
the destablising effects of axial load on the
lining stiffness and other features of soil-
structure interaction.
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CONCLUSIONS

A boundary element has been developed useful in
the finite element analysis of deep underground
openings. The circular boundary element
facilitates efficient, economic and accurate
modelling of a wide variety of problems. Its
use is illustrated by the analysis of lined and
unlined circular and elliptical tunnels. The
method can be used for the analysis of inelastic
behaviour and more complex cavity geometries.

In a subsequent paper the development is
extended to include more sophisticated elements,
and problems of soil failure around tunnels and
lining stability (buckling) will also be dis-
cussed.

REFERENCES

Booker, J.R. and Small, J.C., 1879. Finite
Element Analysis of Problems with Infini-
tely Distant Boundaries. The University
of Sydney, School of Civil Engineering,
Research Report No. R356.

Ho8g, K., 1968. Stresses Against Underground
Structural Cylinders. Jnl. Soil Mechs.
Fndns. Divn., ASCE, Vol.94, No.SM4, pp.883-
858.

Kirsch, G., 18%8. V.D.I.

Lysmer, J. and Waas, G., 1972. Shear Waves in
Plane Infinite Structures. Jnl. Eng. Mechs.
pivn., ASCE, Vol.95, No.EM4, Proc. Paper
8716, pp.85-105.

Melan, E., 1932. Der Spanningzustand der durch
eine Einzelkraft im Innern beanspruchten
Halbschiebe, Z. Angew, Math Mech., Vol.l2.

Muir-Wood, A.M., 1975. The Circular Tunnel in
Elastic Ground. Geot. Vol.25, pp.115-127.

Mushkhelishvili, N.I., 1967. Rock Mechanics and
the Mathematical Theory of Elasticity.
P. Noordhoff Ltd., Croningen, Netherlands.

Neuber, H., 1937. Kerbspannungslehre.
J. Springer, Berlin.

Obert, L. and Duval, W.I., 1967.
and the Design of Structures in Rock.
Wiley and Sons, New York.

Savin, G.N., 1961. Stress Concentration around
Holes. Pergamon Press.

Terzaghi, K. and Richart, F.E., 1952. Stresses
in Rock around Cavities. Geot. Vol.3,
pp.57-90.

Zienkiewicz, 0.C., 1977. The Finite Element
Method. McGraw-Hill, U.K.

Vol.42, 1898.

Rock Mechanics
John




